Receive Antenna Loops For Your Fence

ANOTHER WAY TO HEAR THOSE STATIONS LOST IN THE NOISE AND COMPLY WITH YOUR HOA

WD9IOK - PAUL HAVLIK FRANKLIN, TN

Background

- Have a lot of history with full size loops prior to relocating to Middle Tennessee
- Experimented with full sized loops on 80, 60, 40M vertical and horizontal configurations
- Had several acres of woods in which to experiment
- Found them to be excellent in reducing band noise...to the tune of 2 db or better
- Improved READABILITY. Receive readings were varied compared to inverted vee's and less than my 40M vertical with 20+ radials. However...the noise reduction was worth the work of installation. Band noise on 40, 60, 80 and 160M can be extremely unpleasant.
- Moved to new QTH with an HOA and had all kinds of limitations plus NO TREES!
- Attic antennas were passable but picked up noise from the electronics in the house
- Allowed to have vertical antennas (with some static) in the backyard with the yard fully enclosed by fence. While performing ok, the verticals are noisy...especially on 40/80M.

Loop Theory and Design

- Loop antennas are considered a "closed-circuit". The two ends are close together.
- There are many types of loop designs
 - Full-Wave
 - Half-Wave
 - Delta Loops
 - Quad Loops
- Small Loops popular and expensive
 - Current distribution is same as a coil
 - Current is the same phase and amplitude through
- Large Loops
 - Current is not the same either in amplitude or phase in each part
 - Gain of about 2 dB vs. ½ wave dipole

Full-Wave Loop Designs

A & B are ¼ wavelength each side C is 1/3rd wavelength each side

Large Loops & Dipoles

- •Full-wave loops directional characteristics are different than the small loop
- •Radiation is maximum PERPENDICULAR to the plane of the loop and minimized to the sides in the loops plane. Assume the same for the gain direction.
- Terminal placement on the sides makes the loop VERTICALLY polarized
- Terminal placement on the bottom makes the loop horizontally polarized
- •Electrical length of the circumference is SHORTER than the actual length.

Calculating the full wave loop length: Length (ft) = 1005/freq MHz

80M Phone 3.790 MHz (DX Window): **265.17 feet** Dipole = 123.48 feet

40M Phone 7.150 MHz: **140.56 feet** Dipole = 65.45 feet

20M Phone 14.200 MHz: **70.77 feet** Dipole = 32.95 feet

To Reduce Noise and Improve Readability

• QUALIFIER – THIS ANTENNA IS FOR RECEIVE ONLY!!!! Do not transmit in them at this low height as the SWR will be too high without a tuner and may interact with steel dog fence causing spurious harmonics!!! So a switch is required.

My math:

80M Loop: 265.17 ft total length

4' Fence: 3.5'H x 2 = 129.08' Length x 2

40M Loop: 140.56 ft total length
 4' Fence: 3.0'x2 = 67.28' Length x 2

•20M Loop: 70.77 ft total length

4' Fence: 3.0' x 2 = 32.38' Length x 2

Use 4:1 Balun for interface

Fence Antenna Views

Remote Antenna Switch

Surge Protectors on Feedline to shack

Ground Rod for Surge and Grounding Fence

Fence Antenna Views – 40M Feedpoint

40M 4:1 Balun Bottom Feed @ Center (Outdoor Balun)

Standard #14 House Wire

Fence Antenna Views – 80M Feedpoint

80M 4:1 Balun Top Feed @ Center (Outdoor Balun)

#22 Wire!!!! Low Visibility

Fence Antenna Views – 20M Feedpoint

20M 4:1 Indoor Balun Bottom Feed @ Center (Indoor Balun)

#22 Wire!!!! Low Visibility

Weatherproof plastic AC Disconnect Housing with interior removed (Home Depot)

Fence Antenna Views

Fence Antenna Views

Audio Comparison

Conclusions/Recommendations

- I have 3 loops on that fence almost overlapping in places no issues
- Low visibility from the house or in the yard until you're almost on top of it
- Feedline is 265' of RG-213 to shack so some loss...could add a switchable preamp at the fence
 but passable for my use
- Some days are better than other. Antenna's are directionally sensitive E-W vs. N & S
- •The Loops have bailed me out in tough fades/conditions to receive stations especially on 40/80
- •Having more than one antenna to account for signal polarity changes/conditions is always better!
- Low cost installation using pretty common items.
- •While not optimal for transmit IT WORKS for receiving!!!!!!